Что же такое «лепестковый» клапан, и зачем он вообще нужен мотоциклу? Прежде чем ответить на этот вопрос, нам придется вспомнить, что во время работы двухтактного двигателя в нем протекают довольно сложные волновые процессы и наблюдаются резонансные явления. В частности, на некоторых режимах происходит так называемый обратный выброс смеси. Он ухудшает наполнение кривошипной камеры, а следовательно, снижает мощность и увеличивает расход топлива. В какой-то мере уменьшить обратный выброс удается настройкой систем впуска и выпуска.
Активный поиск в этом направлении как раз и привел к обратному пластинчатому клапану (ОПК), который автоматически управляет впуском и позволяет оптимизировать фазы и процесс газообмена в двигателе. Впервые ОПК появились на мотоциклетных двигателях еще в начале 30-х годов. Первый клапан был предельно прост и представлял собой одну упругую стальную пластину, расположенную перпендикулярно потоку свежей смеси.
Основные недостатки этого клапана — большое сопротивление на впуске и низкая долговечность — длительное время были почти непреодолимы и сильно затормозили внедрение ОПК. Однако подобные конструкции в несколько модернизированном виде применяются и до настоящего времени на нефорсированных двухтактных лодочных моторах. Клапан, устанавливаемый на современные модели мотоциклетных двигателей, существенно отличается от простейшего: пластины теперь расположены под углом к по- току, а корпус сделан в виде «односкатного» (рис. 1) или «двускатного (рис. 2) домика».
Кроме того, разработаны и применяются различные системы впуска с — полнопоточные и неполнопоточные, а это налагает свой отпечаток на конструкцию и поэтому следует хотя бы бегло обе системы рассмотреть. В полнопоточных системах вся смесь проходит через лепестковый клапан. При этом различают чисто клапанную схему, когда впуском управляет клапан (рис. 3), и смешанную, когда началом впуска управляет поршень, а концом — клапан (рис. 4).
В любом варианте полнопоточная система обладает одним неоспоримым достоинством: она полностью устраняет обратный выброс смеси. Кроме того, начало и конец впуска,— то есть, по существу, длительность фаз,— регулируется здесь совершенно автоматически, в зависимости от режима работы двигателя. Есть у полнопоточной системы и недостатки: большое гидравлическое сопротивление и высокие нагрузки на пластины. В случае если пластины сломаются, двигатель выходит из строя: это серьезно тормозит распространение данной схемы.
Что касается неполнопоточной системы, то в ней смесь поступает в кривошипную камеру по двум каналам: в одном ее пропуском заведует лепестковый клапан, в другом — поршень. Из сказанного понятно, что одной из самых трудных проблем, которые приходится решать в процессе доводки двигателей с клапаном, является обеспечение надежности ОПК и, в частности, наиболее нагруженного элемента — упругой пластины.
Требования к ней довольно противоречивы: с одной стороны, она должна быть чувствительной к малым перепадам давлений, успевать следить за их пульсацией во впускном патрубке и не создавать большого гидравлического сопротивления; с другой,— обладать достаточной прочностью и жесткостью.
Этим требованиям больше всего отвечает специальная пружинная сталь или особый материал «Эпоксид-Ламинат», последний аналогичен отечественному стеклотекстолиту СТЭФ. Японская фирма «Сузуки» использует для изготовления пластин клапанов армированную пластмассу, а фирма «Хонда» нередко применяет пластины с элементами жесткости. Проводятся работы и в области использования совершенно новых материалов.
На рис. 5 показана пластина из искусственной смолы, армированной высокопрочным волокном. Особенность ее в том, что она многослойна. Волокна каждого слоя ориентированы в определенном направлении, и потому пластина способна воспринимать повышенные нагрузки. Большинство иностранных фирм, решая проблему надежности, вынуждено было пойти по пути усложнения ОПК, создания многопластинчатых конструкций, которые, естественно, более трудоемки и сложны в изготовлении, но обеспечивают долговечность за счет снижения нагрузок, приходящихся на каждую пластину в отдельности.
Большое влияние на показатели двигателя с ОПК оказывает и такой параметр упругих пластин, как их толщина. Обычно толщина пластины лежит в пределах 0,1—0,3 мм. Одним из способов повышения надежности ОПК является выбор оптимального профиля ограничителя и седла лепесткового клапана. Работы в этом направлении проводятся как у нас, так и за рубежом. Смысл их в том, что умело, профилированные рабочие поверхности обеспечивают плавное обкатывание пластины в момент ее соприкосновения с седлом (рис. 6).
На большинстве зарубежных двигателей применяются многопластинчатые клапаны с двускатным седлом и квадратными или прямоугольными пластинами (рис. 7). Японская фирма «Ямаха» считает, что очень важно выбрать оптимальный угол наклона пластин к потоку: в ее ОПК он составляет 26°. Кроме того, для обеспечения надежности в конструкцию ОПК здесь введен дополнительный элемент — ограничитель подъема, а чтобы снизить ударные нагрузки на пластину в момент ее посадки на седло, корпус клапана нередко покрывается специальной масло-бензостойкой резиновой смесью.
Многие иностранные фирмы для лучшего поглощения энергии удара и уменьшения отскоков пластины при посадке и седло клапана делают из упругого материала (рис. 8а, б). Применение ОПК на мотоциклетных двигателях — дело далеко не простое. Нередко в связи с ним приходится вносить серьезные изменения в конструкцию системы впуска.
И вот почему. Как мы уже обмолвились вначале, во впускной системе двигателя, особенно одноцилиндрового, происходят колебания потока смеси. Настройкой системы (подбором длины и сечения впускного патрубка) можно добиться такого положения, когда на оптимальном режиме работы создаются наилучшие условия наполнения кривошипной камеры и уменьшается обратный выброс. При установке ОПК, обладающего заметным гидравлическим сопротивлением, эта настройка сбивается, и в работе двигателя появляется «провал».
Тогда, чтобы расширить диапазон настройки, применяют дополнительные резонансные камеры (или аккумуляторы). Надо отметить, что аккумуляторы положительно влияют и на работу обычного двигателя, не имеющего пластинчатого клапана. В этом случае повышается коэффициент наполнения и улучшается процесс смесеобразования из-за уменьшения пульсаций. Правда, сказанное в большей степени относится к форсированным двигателям. Японская фирма «Ямаха» разработала резонансно-инерционную систему наддува для форсированных двухтактных двигателей. Резонансная камера размещена между карбюратором и впускным окном (рис. 9).
В момент закрытия ОПК происходит наполнение аккумулятора смесью из карбюратора. При открытии ОПК заряд из аккумулятора добавляется к заряду, поступающему из карбюратора. Экспериментальный подбор соотношений объема аккумулятора и сечения соединительного патрубка позволил установить, что объем аккумулятора должен быть не меньше рабочего объема двигателя, а сечение соединительного канала — не менее сечения диффузора карбюратора при положении дроссельной заслонки, соответствующей режиму, на котором появляется «провал».
Эксплуатационные испытания показали, что снижение расхода топлива может достигать 10—14 % при одновременном улучшении динамической характеристики мотоцикла. Вообще более широкое применение ОПК открывает неплохие перспективы. Так, на мотоцикле ММВЗ-3.115 с двигателем, имеющим ОПК, расход топлива снижается в среднем на 17 %, содержание СО в отработавших газах уменьшается на 50 % по сравнению с двигателем без лепесткового клапана. В то же время улучшается динамическая характеристика.
Например, время разгона до скорости 70 км/ч при двигателе с ОПК — 15 с, а без него — 19 с. Для двигателя Ш-62 (50 см3) снижение расхода топлива на двигателе с ОПК составляет 15 %, уменьшается и токсичность отработавших газов. Для тех, кто хочет получить более подробные сведения о конструкции и расчете ОПК можно порекомендовать книгу «Экономичность двигателей мотоциклов и мотороллеров», подготовленную коллективом конструкторов Тульского машиностроительного завода и выпущенную в 1990 году Приокским книжным издательством.
(Автор: Д. ЮДИН, Инженер. источник журнал Мото)
|